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Abstract—Modern software development relies heavily on the
use of external libraries and packages as software reuse provides
benefits, such as reduced time to market and lower development
cost. However, these libraries often come with their own set of
direct and indirect dependencies which could introduce vulnera-
bilities, compromising the security of end users. Prior work shows
that developers may remain unaware of these vulnerabilities
until a security incident that exploits them occurs, leading to
potential consequences for data privacy. Therefore, it is essential
for developers to have the ability, before committing time to
a project, to understand whether the external libraries and
packages they intend to use may induce vulnerabilities, and how
that might happen.

In our work, we use the dataset made available by the Goblin
framework to identify and evaluate salient features for predicting
the vulnerability profile of software packages. We use these
features to build classifiers for predicting whether or not a
dependency-related vulnerability will occur within 3, 6, or 12
months. Our approach proves to be effective, achieving F1-
scores of 0.74, 0.79 and 0.86 in the 3, 6, and 12 month contexts
respectively. Providing timely vulnerability information could
help developers identify potential security weaknesses before
deploying a package to production, thereby minimizing the risk
of security incidents.

Index Terms—Dependency Analysis, Vulnerability Prediction,
Software Security, Goblin Framework, Neo4J, Maven Central.

I. INTRODUCTION

The reuse of external software packages is a common
practice in modern development, enabling developers to reduce
costs, accelerate timelines and build upon well-tested com-
ponents [1]. Modern software development heavily relies on
external libraries and frameworks, often forming the backbone
of applications across various domains [2]. Dependencies en-
able developers to rapidly create robust systems by leveraging
years of cumulative innovation encapsulated in reusable code
modules. This practice not only promotes ecosystem-wide
standardization and interoperability but also ensures scalability
and efficiency in complex software projects [3]. However, de-
spite their advantages, software dependencies could introduce
significant challenges and security risks for end users [4].
Applications often rely on multi-layered dependency struc-
tures, where a single package may depend on dozens or even
hundreds of other libraries [5]. This creates a network effect
where vulnerabilities in one library can spread throughout
the system [6]. The impact of software vulnerability can be
significant and result in compromise and data loss [7], at a
significant cost for companies [8], [9].
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Traditionally, developers become aware of these flaws only
after security incidents, undermining data privacy and sys-
tem integrity [10]. It is therefore essential to predict such
vulnerabilities in advance, providing useful tools for iden-
tifying risks during the early stages of development. Cur-
rent methods for managing software vulnerabilities, such as
Common Vulnerabilities and Exposures (CVE) scanning, are
predominantly reactive, focusing on patching after an issue is
detected. These approaches overlook the complex propagation
of vulnerabilities through dependency structure [11]. Also,
many tools lack intuitive interfaces and seamless integration
into developers’ workflows, limiting their effectiveness [12].
Additional problems include poor interpretability of prediction
models and a lack of consideration for contextual factors
specific to software packages, leaving significant gaps in risk
mitigation [13].

Our work proposes a predictive model based on machine
learning, leveraging dependency graphs and code metrics from
the Maven ecosystem (Maven Central) to assess the likelihood
of a given software package being associated with one or
more CVEs over a time frame ranging from three to twelve
months. Our work evaluates several classification techniques,
including Naı̈ve Bayes, Random Forest, XGBoost and Logistic
Regression, to identify and analyze patterns in historical data.
We utilized the Goblin framework [14] to extract data from
the Maven ecosystem, including CVEs, update metrics and
more, to create a rich dataset comprising information on over
15 million nodes and 134 million edges.

The development of our predictive model presented several
challenges that required innovative solutions. First, handling
data complexity: the large scale of the dataset required
extensive and advanced preprocessing approaches, as well as
an in-depth study of tools like Neo4j and Cypher to make
queries more efficient. Another issue is that of reducing
false negatives: we adopted robust models, such as Random
Forest, to improve the system’s sensitivity in detecting critical
vulnerabilities. Finally, interpretability poses a challenge as
model decisions should ideally be explainable. We perform
feature analysis to make the model’s results understandable
and practical for decision-making.

The implemented models demonstrated strong predictive
capabilities, operationalized as effectiveness in forecasting the
likelihood that one or more dependencies in a Maven software
package could be associated with one or more vulnerabilities
in the future. In this task, the model achieves F1 score up to
86% and precision up to 83%. Additionally, the system was
also able to identify and recommend risk-free dependencies,
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Fig. 1: Model Architecture

providing useful insights for developers. Our key contributions
are as follows:

• We evaluate multiple classification models on a custom
vulnerability prediction dataset built using the Goblin frame-
work.

• We implement robust feature selection and preprocessing to
enhance model accuracy and interpretability.

• To ensure ease of use for developers, we pair the model
with an easy-to-use web-based UI to initiate analysis and
visualize results and make our replication package publically
available online [15].

Building upon these contributions, our study addresses the
following research questions:

• RQ #1: Which algorithms and feature engineering best
predict vulnerabilities? (Section IV-A)

• RQ #2: What are the key features in Maven graphs and
metadata that significantly influence vulnerability risks?
(Section IV-B)

• RQ #3: How can the model’s results be presented to facil-
itate quick, data-driven security decisions? (Section IV-C)

II. RELATED WORK

Vulnerability Prediction Yasasin et al. [16] explore time-
series forecasting models for post-release software vulnerabil-
ity prediction. Leverett et al. [17] argue that predictive models
can help strategic vulnerability management by estimating the
volume and characteristics of upcoming CVEs, supporting
proactive patching and resource allocation. Kalouptsoglou et
al. [18] provide a systematic mapping of vulnerability pre-
diction methods, highlighting trends like increased reliance
on deep learning and code analysis. Li et al. [19] propose
VulPecker, which uses code similarity to detect specific soft-
ware vulnerabilities, demonstrating the utility of pattern- and
similarity-based detection systems. Scandariato et al. [20]
and Dam et al. [21] evaluate models to predict vulnerable
mobile app components, based on analysis of small datasets
of Android apps. Shin et al. [22] evaluate a variety of pre-
dictors, finding that several metrics can predict vulnerabilities
with high accuracy. These studies emphasize the need for
combining predictive, statistical and automated methods for
effectively vulnerability management. However, gaps remain,

particularly in the integration of this techniques with real-
world operational challenges, such as highly dynamic software
ecosystems. This research study builds on these insights, with
the aim of enhancing predictive accuracy and applicability in
practical scenarios.
Risk Mitigation Hasib et al. [13] propose a Morphological
Analysis (MA) framework to systematize risk mitigation in
software projects. The study highlights the value of models
such as Bayesian statistics and genetic algorithms, for enhanc-
ing risk prediction and mitigation.
Defect Prediction Software defect analysis techniques seek
to detect [23]–[28] or predict [29]–[32] bugs in software.
Other work focuses on characterizing general assessment of
software quality based on a variety of inputs [33]. While these
techniques are closely related to the ones discussed above, the
notion of “bug” is broader than that of “vulnerability” as not
all correctness issues may have direct security implications.
Software Datasets Jaime et al. [14] introduced the Goblin
framework, a tool for enriching and querying the Maven
Central dependency graph. Goblin combines a temporal de-
pendency graph meta-model with on-demand metrics such as
CVEs and freshness, enabling ecosystem-level analysis and
proactive library management.

III. METHODOLOGY

To model the vulnerability risk accrued by a release due
to its dependency profile, we collected a dataset of relevant
software packages, and we used it to generate historical
vulnerability information for three look-ahead periods. We
then evaluated four classification models in predicting whether
vulnerability would arise within each period.

A. Datasets

We created our datasets with features collected from the
Goblin Neo4J database [14] and the OSV (Open Source
Vulnerabilities) database [34]. Each node in the Goblin Neo4J
graph represents either an artifact (identified by its group and
artifact ID) or a release (characterized by version and times-
tamp information). Dependency relations are modeled as edges
between nodes, representing direct or transitive dependencies.
These edges also encode additional metadata, such as version
ranges, dependency scopes (e.g., compile, test, runtime) and
timestamps which are crucial to our feature collection process.



TABLE I: Model Performance for Each Scenario
Precision Recall Accuracy F1-Score

Model 3M 6M 12M 3M 6M 12M 3M 6M 12M 3M 6M 12M
Naive Bayes 0.54 0.59 0.64 0.44 0.46 0.47 0.78 0.74 0.70 0.48 0.51 0.54
Random Forests 0.79 0.82 0.83 0.69 0.76 0.79 0.88 0.88 0.81 0.74 0.79 0.86
XG Boost 0.78 0.82 0.83 0.67 0.74 0.77 0.88 0.87 0.85 0.72 0.78 0.80
Logistic Regression 0.66 0.68 0.70 0.36 0.41 0.48 0.80 0.77 0.72 0.47 0.51 0.57

The Goblin Neo4J provides vulnerability information for
known CVEs associated with artifacts but does not include
publication dates. As such, we collected this data from the
OSV database. Our analysis focused on modeling transitive
dependencies, so direct vulnerabilities were excluded from
CVE-related feature computation.

The datasets we created (one each for the 3-month, 6-
month, and 12-month prediction scenarios) contain 315,000
artifacts each, with each row corresponding to a randomly
sampled Release from the Goblin Neo4J database. Sampling
was stratified by the number of dependencies associated with
each release. As our model is predicated on the effect of
dependencies on security events, we excluded releases not
associated with any dependencies from our sample.

To create our datasets, we queried the Neo4J database using
Cypher queries to extract relevant data, including artifact,
release nodes, dependency edges and associated metadata
like timestamps and speed (releases per day). These values
are computed and integrated dynamically using the Goblin
Weaver.

B. Feature Collection

Our approach is depicted in Figure 1. In the Goblin frame-
work, CVE data represent vulnerabilities that directly impact
a release, while CVE AGGREGATED includes both direct
and transitive vulnerabilities. To predict vulnerabilities aris-
ing from dependencies, we designed a binary target, CVEx,
which indicates whether the CVE AGGREGATED data for the
artifact includes vulnerabilities not present in CVE and were
published within a specified prediction window.

To extract features, for each release under consideration, we
first collect a list of direct dependencies (Step 1 in Figure 1) by
querying the Goblin Neo4J database (when making predictions
in our integrated solution, the dependencies are obtained by
parsing Maven POM files). For each direct dependency, we
extract the following features(Step 2):
1) Speed: Average number of releases per day for an artifact

[35].
2) Time Difference: Time difference (in days) between when

a release was published and when the dependency under
consideration was published.

3) Month of Release: The month in which the dependency
under consideration was released.

We also aggregated features from prior versions of each
dependency (up to 10 prior versions) to enrich the dataset with
information on the dependency’s past vulnerability behavior.
1) Number of Prior Versions Considered: Number of prior

versions of a dependency over which data points have been
accumulated, up to a limit of 10.

Fig. 2: Feature Importance

2) Number of Prior Versions with dependency-related
CVEs: Number of prior versions with transitive CVEs.

3) Average Number of dependency-related CVEs: Average
number of dependency-related CVEs across prior versions.

4) Average Number of Days till First dependency-related
CVE: Average number of days from the publication of
prior versions of a release till a dependency-related CVE
was published against it.

For uniformity in the dataset creation process, ensuring
we had a consistent number of columns, dependency-related
features were collected only for the ten most outdated depen-
dencies of each release. Prior research has identified outdated
dependencies as a significant vulnerability risk factor [6], [36].
This choice is also supported by our analysis of the Maven
dataset, which showed that 75% of the releases had fewer than
11 dependencies. Therefore, for most projects, our approach
captures data points for all dependencies. For packages with
fewer than 10 dependencies, available features were replicated.

Along with the dependency-related features, we collected
the release month and the number of dependencies per release.
Prior studies have identified a cyclical pattern in the occurrence
of security events, linked to hacker conferences [37].

C. Model Engineering

In each scenario (3-months, 6-months, 12-months), we
trained four classifiers (Naı̈ve Bayes, Random Forests, XG-
Boost, and Logistic Regression) on our data discussed in
Section III. These models were used to predict the likelihood
that a vulnerability arises for each dependency within the
target look-ahead period (Step 3). The application we designed
leverages these models to make per-dependency predictions
for any software package entered for analysis. This allows us
to alert users about dependencies that might pose a vulner-
ability risk within the prediction time frame. Following the
predictions, the results are aggregated (Step 4) to compute an
overall assessment of the software package and, the aggregated
outcome is returned to the user in a detailed assessment report
(Step 5).



TABLE II: Impact of no. of Dependencies on Performance
Num. Dependencies Precision Recall Accuracy F1-Score

1 0.79 0.71 0.82 0.75
3 0.83 0.76 0.85 0.79
5 0.83 0.77 0.85 0.80
8 0.83 0.79 0.86 0.81
10 0.83 0.79 0.86 0.81

D. Implementation

We implement our approach in Python using Scikit-learn for
machine learning, Pandas for data processing and FastAPI for
building the back-end interface. Our implementation interfaces
with Neo4J to extract dependency data and CVE data from
the OSV database. It also processes POM files from Maven
Central or GitHub to execute the predictions. We implement
a UI for the predictor using the React.js framework.

IV. EVALUATION

A. Predictor evaluation (RQ #1)

Table I presents the results of four classification algorithms
(Naı̈ve Bayes, Random Forests, XGBoost, and Logistic Re-
gression) on vulnerability prediction at 3, 6 and 12 months
on our test set, following hyper-parameter tuning (with 5-fold
cross-validation). From the table, Random Forests emerges
as the best-performing algorithm, achieving an F1-score of
86% over a 12-month look-ahead period. This, along with
the strong performance of XG Boost highlights that tree-
based models are particularly effective in capturing the com-
plex patterns in dependency graphs, answering RQ #1. We
attribute the performance improvement with longer look-ahead
periods to differences in dataset balance [38]. Vulnerability
reports increase over time, making longer look-ahead datasets
(12M>6M>3M) more balanced.

B. Feature Analysis (RQ #2)

a) Feature Importance: We extracted feature importance
data from our best performing model (Random Forests w/
12-month). The analysis (Fig. 2) highlights that the number
of dependencies is the most critical factor in predicting vul-
nerabilities, confirming the hypothesis that larger dependency
graphs increase risk. In addition, the average number of
CVEs in more recently released dependencies emphasizes the
significance of historical vulnerability trends, particularly in
indirect dependencies. Temporal aspects, such as the time dif-
ference between publication of a package and its dependencies
also play key roles, with actively maintained dependencies
(captured by the speed feature) reducing risks. These findings
directly answer RQ #2 by underscoring the importance of
dependency management and proactive updates. Note that
the indexes attached to the feature names (where applicable)
correspond to the dependency they are associated with, from
most outdated 0 to least outdated 9.

b) Impact of Number of Dependencies: To evaluate the
impact that the number of dependencies considered might
have, we trained the Random Forests model (under the same
conditions described above), but varying the number of depen-
dencies considered (i.e., 1, 3, 5, 8 , and 10 dependencies), and
evaluated the model’s performance in those contexts. Table II

Fig. 3: Code Vulnerability Predictor Application UI

presents the result of this analysis, showing that the number
of dependencies considered has a positive impact on model
performance, up to 8 dependencies. This indicates that the
number of dependencies considered is an important model
hyper-parameter of our model.

C. User interface (RQ #3)

To address RQ #3, we developed a ReactJS web interface
(Fig. 3) that facilitates quick, data-driven security decisions.
The interface allows users to specify a project to be analyzed,
by uploading a corresponding POM file. The identified depen-
dencies are sent to the machine learning model for analysis.
Once the predictions are returned, the interface displays the
three predicted risk scores (3-month, 6-month and 12-month
scores) along with their average (total score). Additionally, it
provides users with a list of identified at-risk dependencies and
recommended alternatives. These alternatives are identified
through an additional database query that retrieves dependen-
cies released between the current date and the past two years,
which do not have any associated CVE aggregated.

V. DISCUSSION

Our model achieves promising predictive performance.
However, there are some potential limitations. The model
primarily relies on dependency metadata, which may not
fully capture the intricate interactions contributing to software
vulnerabilities. For instance, specific attributes of source code
such as code complexity, coding patterns, or direct references
to known vulnerabilities, could provide additional insights.
Another limitation concerns generalizability. Our model is
trained on Maven, which could restrict its applicability to other
ecosystems. Expanding the dataset to include platforms such
as npm or PyPI, could help identify potential differences in
vulnerability trends across ecosystems.

Furthermore, the focus of the dataset on dependency graphs
does not consider variations in dependency risk across dif-
ferent contexts, such as popular versus unpopular packages,
which tend to have different security profile and impact [39].
Exploring these differences in future work could allow targeted
interventions to address vulnerabilities. In summary, this work
highlights the considerable potential of machine learning for
vulnerability prediction while also identifying key areas for
advancement.
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